2,614 research outputs found

    Correlation and prediction of dynamic human isolated joint strength from lean body mass

    Get PDF
    A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass

    ORIENTATION AND ANATOMICAL NOTATION IN CONODONTS

    Get PDF

    Nanoelectromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis

    Get PDF
    Miniaturized gas chromatography (GC) systems can provide fast, quantitative analysis of chemical vapors in an ultrasmall package. We describe a chemical sensor technology based on resonant nanoelectromechanical systems (NEMS) mass detectors that provides the speed, sensitivity, specificity, and size required by the microscale GC paradigm. Such NEMS sensors have demonstrated detection of subparts per billion (ppb) concentrations of a phosphonate analyte. By combining two channels of NEMS detection with an ultrafast GC front-end, chromatographic analysis of 13 chemicals was performed within a 5 s time window

    Sexting: You Found the Sext, What to Do Next? How School Psychologists Can Assist with Policy, Prevention, and Intervention

    Get PDF
    Early Monday morning, it is brought to the school psychologist’s attention that Katie, a 15-year-old student, engaged in “sexting” over the weekend; she sent a naked picture of herself to her boyfriend. The boyfriend immediately forwarded the picture to a group of his friends. At school on Monday, many students were talking about the picture, and Katie was humiliated. The school is unaware of how many students this sext message has reached. What can the school psychologist do to intervene with the female student, her boyfriend, and his friends? What, if anything, can be done to prevent this message from being spread to other students and even other school districts? Should law enforcement be contacted? How can the school psychologist help prevent similar incidents from occurring in the future

    Is Your School Prepared for a Sexting Crisis?

    Get PDF
    Sexting is a growing challenge. Results from a survey indicated that 20% of adolescents ages 13–19 have sent or posted nude or semi-nude pictures of themselves; 71% of adolescent females and 67% of adolescent males who have sexted sent the content to a boyfriend or girlfriend; and 38% of adolescent females and 39% of adolescent males report having seen messages originally intended for someone else (National Campaign, 2008). Those messages can spread at a rapid rate, causing both legal and emotional ramifications for all students involved. Principals can help prevent sexting and mitigate its negative consequences by making staff members and students aware of the issues involved and implementing effective prevention and intervention efforts

    Graduate Preparation of School Psychologists in Serving English Language Learners

    Get PDF
    The purpose of this study was to examine the training practices of NASP accredited graduate programs in school psychology with regard to best practices in working with English Language Learners (ELLs). Training directors of school psychology programs were surveyed regarding the amount of time and the extent of instruction they provided their school psychology graduate students on the topic of ELLs. School psychology interns were also surveyed regarding both their current knowledge about serving ELLs and their perceived preparedness to serve ELLs. Results indicated that school psychology programs are not adequately preparing graduate students to serve the growing population of ELLs. Faculty members cited time as the largest barrier to increasing their instruction about ELLs, particularly the amount of time that must be devoted to other requirements per state and national standards. Interns rated themselves as feeling less than adequately prepared to serve ELLs effectively, both during their internship and for their future practice. This article also presents implications for school psychology graduate training

    Pattern Reduction in Paper Cutting

    Get PDF
    A large part of the paper industry involves supplying customers with reels of specified width in specifed quantities. These 'customer reels' must be cut from a set of wider 'jumbo reels', in as economical a way as possible. The first priority is to minimize the waste, i.e. to satisfy the customer demands using as few jumbo reels as possible. This is an example of the one-dimensional cutting stock problem, which has an extensive literature. Greycon have developed cutting stock algorithms which they include in their software packages. Greycon's initial presentation to the Study Group posed several questions, which are listed below, along with (partial) answers arising from the work described in this report. (1) Given a minimum-waste solution, what is the minimum number of patterns required? It is shown in Section 2 that even when all the patterns appearing in minimum-waste solutions are known, determining the minimum number of patterns may be hard. It seems unlikely that one can guarantee to find the minimum number of patterns for large classes of realistic problems with only a few seconds on a PC available. (2) Given an n → n-1 algorithm, will it find an optimal solution to the minimum- pattern problem? There are problems for which n → n - 1 reductions are not possible although a more dramatic reduction is. (3) Is there an efficient n → n-1 algorithm? In light of Question 2, Question 3 should perhaps be rephrased as 'Is there an efficient algorithm to reduce n patterns?' However, if an algorithm guaranteed to find some reduction whenever one existed then it could be applied iteratively to minimize the number of patterns, and we have seen this cannot be done easily. (4) Are there efficient 5 → 4 and 4 → 3 algorithms? (5) Is it worthwhile seeking alternatives to greedy heuristics? In response to Questions 4 and 5, we point to the algorithm described in the report, or variants of it. Such approaches seem capable of catching many higher reductions. (6) Is there a way to find solutions with the smallest possible number of single patterns? The Study Group did not investigate methods tailored specifically to this task, but the algorithm proposed here seems to do reasonably well. It will not increase the number of singleton patterns under any circumstances, and when the number of singletons is high there will be many possible moves that tend to eliminate them. (7) Can a solution be found which reduces the number of knife changes? The algorithm will help to reduce the number of necessary knife changes because it works by bringing patterns closer together, even if this does not proceed fully to a pattern reduction. If two patterns are equal across some of the customer widths, the knives for these reels need not be changed when moving from one to the other

    Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications

    Get PDF
    We have developed arrays of nanomechanical systems (NEMS) by large-scale integration, comprising thousands of individual nanoresonators with densities of up to 6 million NEMS per square centimeter. The individual NEMS devices are electrically coupled using a combined series-parallel configuration that is extremely robust with respect to lithographical defects and mechanical or electrostatic-discharge damage. Given the large number of connected nanoresonators, the arrays are able to handle extremely high input powers (>1 W per array, corresponding to <1 mW per nanoresonator) without excessive heating or deterioration of resonance response. We demonstrate the utility of integrated NEMS arrays as high-performance chemical vapor sensors, detecting a part-per-billion concentration of a chemical warfare simulant within only a 2 s exposure period

    Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's

    Get PDF
    BACKGROUND: Excessive sequential stereotypy of behavioral patterns (sequential super-stereotypy) in Tourette's syndrome and obsessive compulsive disorder (OCD) is thought to involve dysfunction in nigrostriatal dopamine systems. In sequential super-stereotypy, patients become trapped in overly rigid sequential patterns of action, language, or thought. Some instinctive behavioral patterns of animals, such as the syntactic grooming chain pattern of rodents, have sufficiently complex and stereotyped serial structure to detect potential production of overly-rigid sequential patterns. A syntactic grooming chain is a fixed action pattern that serially links up to 25 grooming movements into 4 predictable phases that follow 1 syntactic rule. New mutant mouse models allow gene-based manipulation of brain function relevant to sequential patterns, but no current animal model of spontaneous OCD-like behaviors has so far been reported to exhibit sequential super-stereotypy in the sense of a whole complex serial pattern that becomes stronger and excessively rigid. Here we used a hyper-dopaminergic mutant mouse to examine whether an OCD-like behavioral sequence in animals shows sequential super-stereotypy. Knockdown mutation of the dopamine transporter gene (DAT) causes extracellular dopamine levels in the neostriatum of these adult mutant mice to rise to 170% of wild-type control levels. RESULTS: We found that the serial pattern of this instinctive behavioral sequence becomes strengthened as an entire entity in hyper-dopaminergic mutants, and more resistant to interruption. Hyper-dopaminergic mutant mice have stronger and more rigid syntactic grooming chain patterns than wild-type control mice. Mutants showed sequential super-stereotypy in the sense of having more stereotyped and predictable syntactic grooming sequences, and were also more likely to resist disruption of the pattern en route, by returning after a disruption to complete the pattern from the appropriate point in the sequence. By contrast, wild-type mice exhibited weaker forms of the fixed action pattern, and often failed to complete the full sequence. CONCLUSIONS: Sequential super-stereotypy occurs in the complex fixed action patterns of hyper-dopaminergic mutant mice. Elucidation of the basis for sequential super-stereotypy of instinctive behavior in DAT knockdown mutant mice may offer insights into neural mechanisms of overly-rigid sequences of action or thought in human patients with disorders such as Tourette's or OCD
    • …
    corecore